
JOGHNAL OF CATALYSIS 25, 265272 (1972) 

Experimental Search for a Simple Rate Equation to Describe 

Deactivating Porous Catalyst Particles 

OCTAVE LEVENSPIEL 

Kecc~ived September 28, 1971 

This paper concerns the experimental detrrmination of the ordrrs of reaction and 
deactivation in the IIth order rate equation which represents the four broad classes 
of deactivation of catalyst particlrs : parallrl, series, side-by-side. and independent. 
Wr discuss the various rractor types which may he usctf, hoth hatch-solids and 
flowing solids. For batch-solids systems WP show that when deactivation is concen- 
tration independent then using a batch of fluid or any flow of fluid gives rc,sulta 
which are simple to interpret. However, \vhrn dcactivation is concentration dr- 
pcndent then only one very particular form of contacting is recommended in that 
it alone allows decoupling of conrrntration and activity effects, and their study one 
at a time. 

In csscnce we show how the methods for ?Ith order homogrnrous reactions c’an 
br rxt.ended in a simple way to catalytic systems with deactivating porous solids. 

a = act)ivity of a catalyst’ pellet, defined 
in Eq. 3 

A = gas phase reactant, 
C = concentrat,ion (mol/lit,er) 
tl = order of deact,ivation, see Eqs. 4-X 

F.40 = feed rat,e of reactant A (mol/sec) 
1~ = rat’e constant for the reaction of A, 

see Eqs. 4-X (literll/molrl-‘.sec.g 
catalyst) 

1;’ = x;c’; 

7’ = temperat,ure (“I<) 
V = volume of fluid (liters) 

W = weight, of catalyst (g) 
,Y.& = fractional conversion of reactant A 

Greek letters 

Q = fractional change in a volume of an 
element of react,ant, fluid on com- 

rllete conversion 
, kc," 

7 = p, capacity factor of a reactor 
FAO 

/c" = liJ@/J' called the n-eight-time (g cat.sec/ 
/i,L = rate constant for the deactivation liter of fluid) 

reaction, see Eqs. 4-S (literfi’/ 
sec.moP’) Xubscripts 

li,l' = kJ2..yn’ 0 = initial time, or for fresh catalyst 
r~ = reaction order for conversion of m = at’ infinite time 

reactant A 
W’ = order of concentration dependency 

A desirable form of kinetic equation for 

of the deactivation 
describing the behavior of deactivating 

LVn = moles of A (mol) 
porous catalyst particles should have the 

1’ = poison 
following properties: 

-.-TA’ = rate of reaction of A (mol/sec.g 1. It should be general enough to repre- 
catalyst) sent the various types of deactivation 

R = product of reaction of A encountered in practice. 
t = time (set) 2. Its parameters should be related in a 
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simple way with the mechanisms of 
action of the deactivation. 

3. Its form should be such that its 
parameters can be found directly by 
experiment. 

4. Its form should be useful for those 
concerned with reactor design. Thus, 
the equation must be easy to use to 
predict performance of reactors, opti- 
mum operating schedules, etc. 

A recently proposed form of kinetic 
equation gives promise to satisfy these re- 
quirements. Its general form for the rate 
of disappearance of any reactant A in the 
environs of a representative pellet of cata- 
lyst is given by 

of feeds which contain poisonous impurities 

A-R -r’~ = kCA”a ) 

P+PJ + (6) 

Independent deactivation, a result of 
structural modifications or sintering of the 
catalyst surface which is exposed to ex- 
treme conditions, and so called because the 
decay is unaffected by the concentration of 
materials in the gas stream but is depend- 
ent on the length of time spent in the high 
temperature environment 

-#A = kCA”a 

da k ud * --= cl (7) 
dt 

-#A = fi(conditions of the fluid bathing the pellet of catalyst) 
. fi(present activity of the catalyst pellet). (1) 

Coupled with this expression, the rate at In certain reactions, such as isomeriza- 
which the activity of the pellet decreases tions and cracking, deactivation may be 
with time is written as caused both by reactant and product, or 

- f = f( 3 con 1 ions of the fluid bathing the pellet of catalyst) d-t’ 

. .fd(present state of the catalyst pellet), (2) 

where the activity of the pellet at any time A-+R 

is defined as A + PJ and - g = kd(C~ + CR)~‘U~. (8) 
R+PJ 

a= 
rate at which the pellet converts reactant A -r’* 

rate of reaction of A with a fresh pellet = I’ --T Ao 
(3) 

The activity starts at unity and usually 
drops smoothly with time to zero. 

Let us illustrate this formulation by 
using nth order kinetics with the four major 
types of deactivation. Thus, if the material 
which deposits on the surface to cause it to 
lose its activity is called the poison P, we 
have: 

Parallel deactivation in which reactant 
decomposes to produce the poison 

A--+R -?+‘A = kc.&% ) 

Series deactivation in which product de- 
composes to produce the poison 

Side-by-side deactivation, representative 

However since CA + CR remains constant 
for a specific feed, this type of deactivation 
reduces to the simple-to-treat independent 
deactivation of Eq. 7. 

In the above expressions the constants 
n, n’, and d are the orders of reaction and 
of deactivation. The rate constants k and 
Icd are normally taken to be Arrhenius tem- 
perature dependent 

Ic = kOe-EIRr and ka = kdOe-EalRT, 

where E and Ed are the activation energies 
of the main reaction and of the 
deactivation. 

Let us now turn to the status of this 
formulation with respect to the above-men- 
tioned four properties of a desirable rate 
form. First Szepe (1) has shown that this 
rate form generalizes many of the previ- 
ously proposed kinetic equations for deac- 
tivating catalyst pellets: the linear, ex- 
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ponential, hyperbolic, Voorhies, Elovich, 
and ot,hers (property 1). In addition pre- 
liminary studies by Khang (2) indicate that 
in many cases this formulation is related 
to the mechanisms of deactivation, account- 
ing for pore diffusion effects without par- 
ticular difficulty (property 2). Finally, in 
recent years numerous studies, referred to 
in Levenspiel (3) have uncovered the fact 
that this formulation is eminently suitable 
for reactor design purposes, allowing simple 
analytical solution to optimal scheduling 
problems for maximizing conversion and 
yield. Such problems have been impossible 
to solve with other equation forms 
(property 4) . 

As yet no one has examined how well 
this form of kinetic equation satisfies the 
third property, a desirable rate form. This 
is the aim of this paper. 

This paper shows how the parameters of 
this formulation, n, n’, d, k, Icd, E, Ed can 
be found directly by experiment. Xote that 
for any condition of operations the values 
of these parameters will account not only 
for the intrinsic surface kinetics, but also 
for pellet size and geometry, as well as port 
diffusion effects for both reactants and 
poisons. 

We illustrate the search strategy by com- 
parison with the simple and well known 
homogeneous reaction. There the rate is de- 
pendent, on two factors, the temperature 
and composition, and these dependencies 
are normally determined one at a time in 
separate experiments. Different rate forms 
are guessed at, starting with the very 
simplest, first order, second order, and so 
on, until a reasonable match between the 
rate form and experiment is obtained. The 
experiments themselves are usually con- 
ducted in a batch reactor and are analyzed 
either by differential analysis (direct test 
with experiment of the different,ial rate ex- 

lyst pellet, and many more parameters to 
evaluate. Nevertheless, by proper choice of 
reactor type and design of experiment it 
becomes possible to directly evaluate and 
test rate equations of various kinds, just 
as with homogeneous systems. 

Hatch-Solids us Flowing Solids 
Experimental Reactors 

First, the available experimental devices 
fall into two broad groups, those which use 
a fixed batch of catalyst, and those which 
use a flow of particles through the reactor, 
see Fig. 1. 

Because of the ease of experimentation 
the setups which use a fixed batch of solids 
are much preferred, however these can only 
be used when deactivation is slow enough 
so that the changing fluid concentration 
can be followed for a sufficiently long time 
before exhaustion of the catalyst. Deacti- 
vat,ion in the order of minutes or longer 
can use the fixed batch of solids. 

Whenever deactivation is very rapid, in 
the order of seconds or less, then a flowing- 
solids system must be used. Cracking cata- 
lysts whose act’ivity half-life is in the order 
of 0.1-l set fall into this category. 

This paper is primarily concerned with 
the batch-solids reactor. Here the choice of 
convenient reactor type again splits into 
two classes depending on whether the de- 
activat.ion expressions da/dt of Eqs. 4-7 
are concentration dependent or not. When 
concentration independent (or n’ = 0’1 then 
any type of batch-solids system may be 
used; but when concentration dependent, 
then unless one particular type of reactor 
is used the analysis of the experimental re- 
sults becomes awkward and difficult. 

We treat these two classes of rate equa- 
tion in turn. 

pression) or by integral analysis (integra- 
tion of the guessed differential rate expres- 

K atch-Solids.. Finding the Rate Equ,ation 

sion and a test of the resulting expression 
when the Deactivation is Independent 

with experiment). 
of Concentrations 

Now -in catalytic systems with deacti- 
vating catalysts matters are somewhat more 

Let us illustrate how to interpret experi- 
ments from the various batch-solids re- 

complicated since we have three independ- 
ent factors to contend with: the temper- 

actors of Fig. 1, how to manipulate the 

ature, composition, and activity of the cata- 
basic performance equations for these re- 
actors by testing the fit for the simplest 
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Batch solids-for slow deactivation 

Batch for both 
solid and fluid 

Plug flow 
for fluid 

Mixed flow 
for fluid 

Recycle flow 
for fluid 

Flow of solids-for fast deactivation 

All Fluidized A 

-plug tlow 

bed 
Solids: mixed flow 
Fluid: questionable 

flow pattern 

FIG. 1. Slow deactivation may use a batch of solids in experimentation; fast deactivation requires a flow 
of solids. 

rate expression for deactivating catalyst 
particles, or 

A--+R -rIA = iXAa (94 

- da = kda. 
dt WI 

This represents first-order reaction and 
first-order deactivation which in addition 
is concent,ration independent. 

Batch-solids, batch-fluid (Fig. la). Here 
we need to develop an expression to relate 
the changing concentration of gaseous re- 
actant with time. Using time as the one in- 
dependent variable throughout the run, the 
kinetic expressions of Eq. 9 become 

= 7 (-T’*) = r+) CAa = k”aCA, (10) 

and 

a = e--kJ. 

Replacing Eq. 12 in Eq. 10 gives 

(12) 

dC.4 --= 
dt 

k”e-kdtC At 

which on separation and integration gives 

ln !$! = F [l - e-k&]. 
d 

03) 

This expression shows that even at infinite 
time the concentration of reactant in an 
irreversible reaction does not drop to zero 
but is governed by the rates of reaction and 
deactivation, or 

(14) 

Combining the above two expressions and 
rearranging gives the useful expression 

ln ln $ = ln ln p - kdt. 
AC.2 AC0 

(15) 

The plot of Fig. 2 shows how to test for 
(11) this rate form. 

The batch reactor is a practical and 
useful device when the characteristic times 
for reaction and deactivation are of the 
same order of magnitude. This factor can 

and for initial activity of unity, or a0 = 1, be controlled by the experimenter by proper 
we find choice of W/V. If deactivation is much 

da ka ---= d. 
dt 

Integrating Eq. 11 yields 

a = a,-,~-W 7 
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FIG. 2. Test of the kinetic expressions of Eq. 9 
using a batch-solids, batch-fluid reactor. 

slower than the conversion, then CAm be- 
comes very low and difficult’ to measure 
accurately. 

Batch-solids: Completely mixed fluid of 
constant flow rate (Fig. lc). Inserting the 
rate equation of Eq. 9a into the performance 
expression for a completely mixed flow re- 
actor gives 

w x* x* 
-= 
FAO 

I 
--;r A 

= hzA’ (16) 

and on rearrangement 

C Ao=l+ka 
C 

= 1 + kur’, (17) 
,A 

where 7’ is a capacity factor analogous to 
space-time and called the weight-time. 

In this expression the activity varies with 
chronological time. To eliminate this quan- 
t.ity integrate Eq. 9b (see Eq. 12) and in- 
sert into Eq. 17. This gives 

C 1’ = 1 + ke-k,tTr, 
CA 

which on rearrangement gives in more 
useful form 

In g - 1 = ln(k7’) - k,J. 

( > 
(19) 

A 

This expression shows how the reactant 
concentration at the reactor outlet rises 
with time, and the plot of Fig. 3 provides 
the test of this kinetic equation. If the data 
fall on a straight line then the slope and 
intercept yield the two rate constants of 
Eq. 9. 

,,,Y intercept = In (k7’) 

FIG. 3. Test) of the kinetic expressions of Bq. !I 
using a bat,ch of solids and mixed flow of fluid of 
constant flow rate. 

We should mention that this and the 
following derivations for a batch of solids 
are based on the pseudo-steady-state as- 
sumption which views that conditions 
change slowly enough with time so that 
the system can be considered to be at 
steady state at any instant. Since a batch 
of solids can only be used in experimenta- 
tion if deactivation is not too rapid this 
assumption is reasonable. 

Batch-solids: Plug constant flow of fluid 
(Fig. lb ). Here the performance expression 
combined with the rate of Eq. 9a gives 

Integrating and replacing a by Eq. 12 gives 

wcAO _ 7, 

F A0 
= &In F = &t In ‘$ (21) 

A A 

which becomes on rearrangement 

In In $J@ = In (k7’) - lcdt. (22) 
A 

Figure 4 shows how to test for the kinetics 
of Eq. 9 and evaluate the rate constants 
for Eq. 9 from this type of reactor. 

Batch-solids: Completely mixed fluid 
with changing flow rate so as to keep CA 
constant (Fig. lc). As we shall see it is 
often extremely useful to take kinetic data 
at a fixed reactant concentration level. This 
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Intercept = In (k7’) 

FIG. 4. Test of the kinetic expressions of Eq. 9 
using a batch of solids and plug flow of fluid at 
constant flow rate. 

is done with deactivating catalysts by 
properly adjusting the feed rate. 

At any instant in the completely mixed 
reactor we already have found from Eq. 18 
that 

c A0 - = 1 + ke-k&‘. 
CA 

To keep CA constant the flow rate must be 
lowered continually, hence the variables in 
this situation are T’ and t. So, on rearrang- 
ing we obtain 

Figure 5 shows how to test for the kinetic 
form of F$. 9 with this varying flow 
procedure. 

Actually there is no particular advantage 
to using varying flow over constant flow 

FIG. 5. Test of the kinetic expressions of Eq. 9 
using a batch of solids and changing flow rate of 
fluid in a mixed reactor so as to keep CA constant. 

when testing for the kinetics of Eq. 9 or 
any other concentration independent deac- 
tivation. However for testing rate equations 
where the deactivation is concentration de- 
pendent this procedure is by far the most 
useful because it allows decoupling the 
three factors of concentration, temperature, 
and activity, and their study one at a time. 

Batch-solids: Plug changing flow of fluid 
so as to keep CA,out constant (Fig. lb). 
At any instant in the plug flow reactor Eq. 
21 applies. Also noting that T’ and t are the 
two variables we obtain on suitable 
rearrangement 

lnT1 = lidf+ln(kIng). (24) 

Figure 5 with one modification (the inter- 
cept given by the last term of Eq. 24), 
shows how to test for the kinetic expression 
of Eq. 9 with this device. 

So far we have illustrated how to use 
the batch, plug flow, and mixed flow re- 
actors to search for the rate constants of 
a particular rate form, Eq. 9. The recycle 
reactor of Fig. Id can also be used ; how- 
ever, except for high recycle rates where it 
approaches the behavior of a completely 
mixed reactor, its use offers no particular 
advantage. 

As long as the deactivation is concentra- 
tion independent any of the above experi- 
mental devices will give results which are 
simple to interpret. Thus all the above 
analyses can be extended with no difficulty 
to any order deactivation d and any order 
of reaction n. 

On the other hand if the deactivation is 
concentration dependent then the concen- 
tration and activity effects do not decouple 
and analysis becomes quite difficult unless 
the proper experimental device is used, one 
deliberately chosen so as to decouple these 
factors. 

Let us consider this case next. 

Batch-Solids: Finding the Rate Equation 
when the Deactivation is Concen- 
tration Dependent 

To decouple the activity and concentra- 
tion effects in the rate we must choose an 
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experimental device which allows the de- For second order deactivation 
activation order to be studied without in- 
terference of concentration effects. The key 

= c.40 - CA + (CAU - CAP’d 

then is to keep constant the concentration 
term in the da/dt equation of Eqs. 4, 5, For 
and 6 while searching for the deactivation 
order. After this the concentration effect 7’2 = 
can be studied. As examples of the concen- 
trations to be kept constant: 

For parallel deactivation (Eq. 4) keep 
C,% constant; For dth order deactivation 

For series deactivation (Eq. 5) keep CR (7’)d--1 = Cl + c2t. (32) 
constant; 
For side-by-side deactivation (Eq. 6) 
keep CP constant; 
For independent deactivation (Eq. 7) 
no concentration need be kept constant’. 

The completely mixed flow reactor with 
controlled and changing flow rate of feed 
can satisfy this requirement for all these 
kinetic forms. 

Deactivation order for parallel deacti- 
vation. We illustrate the method of analysis 
with general n-, n’-, and d-order kinetics for 
parallel deactivation, or Eq. 4. At constant, 
C, Eq. 9 becomes 

(25) 

- 2 = (kdCAn’)ad = Vda”. (26) 

So for the mixed flow reactor and the rate 
of Eq. 25 we obtain 

14’ XA XA CA, - CA -= 
F AU 

Figure 6 then shows how to test for dth 
order deactivation. If the data fall on a 
st,raight line the guessed mechanism is cor- 
rect, and the slope and intercept, gives the 
constants I?’ and k’d. 

After the order of deactivation is found 
then the concentration and temperature de- 
pendencies can be determined in turn. The 
procedure for this is similar to that for 
nondeactivating catalytic systems, is well 
known, and needs no discussion here. 

Deactivation order for other types of de- 
activation. The above development shows 
how to treat parallel deactivation. The 
analysis is quite similar for series deacti- 
vation if CA, hence CR is kept constant, and 
for side-by-side deactivation if C, and, if 
possible, C, are kept constant. If CA cannot 
be kept constant in side-by-side deactiva- 
tion, analysis is still not particularly 
difficult. 

Flowing-solids Experimental Reactors 
or Devices where the through flow of gas 

CA0 - CA and solid, with flow patterns known, arc 
T’ = 

h/a 
(27) 

A 
Next, integrating Eq. 26 for various orders WY d-l 

of deactivation, and then replacing in Eq. 
27 and rearranging gives 7’ as a function 
of t as follows: 

For zero order deactivation 

1 lc’ 
7=cA~-cA-cAO-cAt; 7 

(28) 

For first order deactivation t 

In 7’ = In ‘*O i ‘* + lc’dt; 
FIG. 6. A straight line on this plot indicates that 

(29) the guessed order of deactivation is correct. Data is 
taken in a mixed reactor with constant CA. 
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much more difficult to build and operate. 
They are only used when the simpler batch- 
solids system cannot be used, this means 
for reactions with very fast deactivation. 

The fluidized bed reactor is probably the 
simplest of these devices, and under steady- 
state flow and with flow pattern known 
(this usually is the difficulty with this type 
of set up) integration and testing of some 
of the simpler rate forms is possible. Leven- 
spiel (5) and Kunii and Levenspiel (4) 
show how to test rate equations with the 
following reaction and deactivation orders 

n = 1; n’= 01. ) ) d = 1,3 

either in a single reactor or in reactor-re- 
generator systems in which catalyst is con- 
tinually recirculated between units. 

Extension to other reaction and deacti- 
vation orders can be done. We need not 
consider this problem here. 

DISCUSSION 

This paper explores the usefulness to the 
experimenter of rate equations having nth 
order kinetics and decay (Eqs. 4-7). We 
ask in particular whether experiments can 
be devised so as to give simply the orders 
and rate constants of these equations. 

1. We show that numerous experimental 
devices can be used to run experiments and 
to test kinetic forms where deactivation in 
concentration independent. These include 
reactors using either a batch or steady 
through flow of solids, and a batch, steady 
through flow or continually changing 
through flow of fluid. 

2. TO test the general rate form with con- 
centration dependent deactivation the most 
useful reactor set up uses a batch of solids 
and mixed flow of fluid with changing flow 
rate so as to keep the concentration of the 
pertinent reaction component unchanged 
with time within the reactor. Thus by con- 
stantly lowering the flow rate in a basket 
or recycle reactor the activity and concen- 
tration dependencies can be decoupled and 
studied separately. 

3. The rate equations treated here cer- 
tainly do not cover all possible cases; how- 
ever, they should suffice to show the gen- 
erality of the method of analysis. Thus we 
conclude that the integral and differential 
methods of testing rate equations for 
homogeneous reactions can be extended 
without undue difficulty to systems of de- 
activating catalysts as long as the proper 
reactor type is selected for the experiment 
and as long as the rate is expressed in the 
form of Eqs. 4-7. 
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